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Abstract

New approaches for the determination of the extent of symmetric and asymmetric band broadening (BB) in size exclusion chromatograph
(SEC) are presented. For this purpose raw data was simulated by starting with either a theoretical Poisson number chain length distributio
(NCLD), or a log-normal weight chain length distribution (WCLD). Each distribution was first converted to a BB-free mass chromatogram, as
typically obtained from a standard differential refractive index detector. Then, the broadened (or “measured”) chromatograms were simulatec
by convoluting the BB-free chromatograms with a BB function, which was assumed to follow symmetrical (Gauss) as well as unsymmetrical
(exponentially modified Gauss) function. A broad range of BB parameters (standard deviggicemd exponential decaygg) was used for the
simulations. The approaches are based on the determination of the points of inflection belonging to the peak of the broadened chromatogram, a
closed as well as empirically derived equations connecting the peak width, its variance, and the pasamatetszg. The developed methods
are applicable for Poisson distributions well above a peak chain length of 100.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction surement due to the influence of band broadening (BB). This
modification is obvious whenever a monodisperse sample (e.g.
Size exclusion chromatography (SEC) is regarded as the motte flow rate marker) is injected as the chromatogram will be a
convenient way to measure the molar mass distribution (MMDontinuous distribution rather than a single line.
of a polymer, although nowadays matrix assisted laser des- The BB mainly occurs in the fractionation columns, and as
orption ionization (MALDI) is a possible alternative whenever a first approximation, one can neglect the extra spreading intro-
narrow MMDs (with polydispersities smaller than 1.2) are inves-duced by the injector, the detector cells, and the interdetector
tigated[1-3]. Direct comparison of both techniques should in capillaries[4,5]. The BB strongly distorts the chromatogram
principle be possible whenever the shortcomings of each methaghapes when analyzing: (a) narrow chromatograms of half-
are properly taken into account. Single-detection SEC (typicallyidths close to those of uniform samplgs-9]; and (b) broad
a chromatograph fit with a mass detector) is not an absolutbut multimodal chromatograms, with sharp elbows and/or nar-
method to measure molar masses, as it is necessary to calibratev peaks[10-12] Therefore, it is essential to determine the
the system with narrow standards of the same polymer. Providegktent of BB and to apply methods correcting for the detrimen-
that the calibration was carried out correctly there remains theal effect of BB.
problem that the true distribution is changed during the mea- Correction for BB in SEC has been extensively treated in
the literature through different approaches. For the traditional
SEC/differential refractometer (DR) configuration, the BB cor-
* Corresponding author. Tel. +43 1 4277 52441; fax; +43 14277 9524.  '€ction aims at obtaining the corrected mass chromatogram by
E-mail address: irene.schnoell-bitai@univie.ac.at (I. SchiRBitai). inverting the phenomenological Tung’s mod&B]. For such
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inversion, several approaches have been proposed, which ussted on a narrow Schulz-Zimm MMD, and while the original
either analyticaJ14] or numerica[15] methods. While analyt- distribution was well recuperated, the standard deviation dif-
ical methods assume a Gaussian BB function, some numericired considerably from its original value. Alternatively, if the
methods can be implemented for any BB shape. Then, thshape of the MMD is known (e.g. a Poisson distribution on a
corrected MMD is obtained by combining the corrected masdinear molar mass axis), then the BB function can be estimated
chromatogram with an independently determined molar masfsom the difference between the mass chromatogram, and its
calibration. An alternative approach (that does not require invertheoretical prediction in the absence of EB].
sions) is based on the assumption of a Gaussian BB, and only Lately, preparative thermal gradient interaction chromatog-
involves a counterclockwise rotation of the molar mass calibraraphy [23,29] was used to fractionate already narrowly dis-
tion curve[16,17] Several BB correction methods have alsotributed polymer samples. It was shown that the obtained frac-
been proposed for multidetection SEC. Some numerical methions had polydispersities smaller than 1.088-32] and these
ods aim at inverting the Tung’s model extended to molar masfactions were used to determine the BB function. The peak
sensor, while the “true” molar mass calibration may be simultashapes were not symmetric in all cases and could be best fit-
neously estimated from a corrected chromatograms[atl@].  ted with either exponentially-modified Gaussians (EMG) or
To directly estimate the MMD, some methods that avoid numerexponential-Gaussian hybrid functions which deviates from
ical inversions have also been propo$ed9]. Correction for the simple approach of using a symmetrical (Gaussian) BB
BB is beyond the scope of the present article, and will not bdunction.
further discussed. Most of the procedures have recently been AnIUPAC projectis now dedicated to BB in SEE3], which
reviewed[8]. is based on a state of the art review (which appeared in 280R)
There are several approaches to determine the extent of BAnd newer results. The calculation or determination of the true
The very first was based on assuming that the total varianckIMD will enable the comparison of SEC results with MALDI-
of the measured chromatogranggy), can be evaluated from ToF results, although the latter are not as ideal or undisturbed as
the contributions of the sample varianczt,%&) (based on its one would hope for (especially when broader distributions are
polydispersity index, PDI) plus the variance of the BB effectinvestigated).

(aéB). Thus, As most papers deal with Gaussian BB functions, itis the aim
2 2 2 of this contribution to simulate the influence of an asymmetri-
OSEC = 9PDI T %8B (1) cal (but uniform) BB, characterized by an EMG (of parameters

By assuming a narrow and Gaussian MMD' and amolar masgBeB and TBB) on different types of distributions. The SpeCial

calibration expressed a4V) = D1 exp(—D-V), (D1, Do arecon-  case ofrgg =0.0mL corresponding to symmetrical Gaussian
stants), them3p, can be calculated frof20]: broadening is included in the simulations. Three approaches for

the determination of the BB function from “measured” chro-
2 (PDI — 1)(x + 1)

0Zp = > ) matograms will be presented, provided that the original weight

D5 chain length distribution (WCLD) can be assigned as being a

with Poisson or a log-normal distribution. In the last case, the corre-
sponding corrected chromatogram can be described by a Gauss

o= %(pm —1)+ %(pD| — 1Y (3)  distribution (as a function of retention volume), which seems to

be a common practice in most publications due to the simpler
Egs. (1)-(3) are still used nowadayg1]. As was shown mathematics involved. The proposed approach for log-normal
by Knox and McLennari20], this approach works for low distributions can be used provided that the standard deviation
polydispersity values (e.g. PDI<1.01), and makes use of théor alternatively the peak width) may be inferred from the poly-
polydispersities as given by the supplier of polymer standardanerization conditions. One of the methods presented in the
Unfortunately these polydispersities are in most cases too higtollowing sections can also be used when multimodale distri-
as was demonstrated by Vander Heyden ef2al] as well as  butions are analyzed which are not ideally baseline separated.
Lee et al[23], and will therefore, lead to an underestimation of The use of multimodale distributions necessitates less experi-
iy mental measurements as for instance mixtures of standards can
Several other methods for estimating the BB have been develbe used to determine the extent of BB, thus reducing the total
oped. Forexample, arecycle technique of a commercial standageshalysis time.
has been proposed to estimate an arbitrary-shaped BB function
in single-detection SE{24]. By assuming a uniform and Gaus-
sian BB with a linear molar mass calibration, it is possible to2- Simulation of the SEC fractionation
use SEC with detection of mass and molar-mass for simulta-
neously estimating the standard deviation of the BB function For @ given polymer, the NCLD(), and the WCLDw(i),
and the calibration coefficien85,26] For multidetection SEC ~ respectively, represent the number and the weight fractions of
(in most cases a light scattering in combination with a DR), arfhei-mer (=1, 2,...). Bothn(i) andw(i) are discrete and nor-
iterative procedure for simultaneously estimating the MMD andMalized distributions, that verify:
the standard deviatiomgg of a uniform and Gaussian BB func-
tion has been proposé§ii8,27] This method was theoretically w(i) o in(i) (4.8)
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in(i) — iw(i) -1 (4.b)
i=1 i=1

5pr(V) andspr(V), are calculated as follows:

C
- SDR(V) w(V)M(V)
V) = = 9.a
- | o | R = e v T ummyay O
Similarly, the weight MMD,w(M), is directly obtained by
changing the abscissa axis of the WCLD fremo Myi, where ~
My is the molar mass of the repetitive unit. Spr(V) = oosDi - / g(V — V)EBR(V)dV
To simulate the ideal SEC fractionation (without any influ- Jo sor(V)AV  Jo
ence of BB phenomena), we shall restrict our analysis to a % (V — NN MO dV
linear homopolymer. The following linear molar mass calibra- = Jo g(oo Ju(V)M(V) (9.b)
tion, logM(V), is adopted: Jo w(V)M(V)dv
) Notice that the normalized chromatograms are independent of
log M(V) = log[Moi(V)] = a — bV ®)  kor, and;°58r(V)dV = [5°5pr(V)dV = 1.Inatrue exper-

imental casespr(V) is calculated from the first equality of Eq.
whereV is the retention volume and the constafus b} rep- (9.b). Sior(V) qualty ot=d

resent the intercept and the slope of @), respectively.
Implicitly, it is also assumed that all chains with a given chain 1. BB function
lengthi have the same hydrodynamic volume. In the absence o2f ' unett
BB, the unbroadened (or “corrected”) chromatogram obtained . . .
c Throughout this work, we shall consider a uniform and
from a DR,spr(V), can be calculated froma(M) and logM(V), : .
L . : ... skewed BB function represented by afirst-order E[&. Such
while simultaneously compensating for the nonlinear logarith- : ) ) .
: . . ; EMG is defined as the convolution of a Gaussian and an expo-
mic transformation described by Eg). Thus, the ordinates of . . )
c . nential decay function, as follows:
spr(V) are[35]:

exp(-V/tep)

$R(V) = Korw [M(V)] M(V) 6  8Y) = Niggogs (V) * =0
. . . = \2
whereKpr is a constant that also includes the detector gainand ~ _ exp| — (V — Vgg) . exp(=V/teB)
the slope of the calibration curve which is constant in this case; /2noBR 2(;§B 8B
andM(V) is calculated from E(5). spr(V) can be regarded as a (20)

continuous signal that is proportional to the mass of the spécies _ )
eluting in the infinitesimal rangé/] V+ dV] as in standard SEC Where{Ves, oss} are the mean volume and the standard devia-
the V axis is evenly-spaced (with V being usually small). tion of the GaussiaWVy,; 4., (V); andzgg is the decay time of
Due to BB, a whole distribution of hydrodynamic volumes the exponential fun(?tlon. Notice thgfV) is normalized, and its
(and therefore of molar masses) is instantaneously present in tifgéan volumevg is given by:
DR cell. Then, the “measured” mass chromatogsag(V) isa 00 _
broadened version afg(V), that can be evaluated through the Vg = / Vg(V)dV = Vgg + 188 (11)
Tung’s equatiorj13] as follows: 0
N To guarantee the same mean volumegf(V) andspr(V)
_ AEC (AL after the convolution of E(8), a BB function withVy = 0 is
sor(V) = / s(V. V)spr(V)AV 4 required, and thereford/sg = —tgg mMust be selectged. Thus,

_ Eqg. (10) reduces to:
whereg(V, V) is the (in general, nonuniform) BB function; and

Vis adummy integration variable that represents an average elu- (V + 188)? Vv

tion volume. At eaclV, a differentg(V) function is defined. For (V)= Nz PI— 2025 * eXp <_TBB)

any symmetricag(V) function, V is unambiguously assigned at (12)
its maximum. For a skeweg(V) function, howevery could be

located at the mode, the mean, or any other measure of central

tendency, and depending on such locatipr(V) may result In the limit case of a symmetrical broadeningg — 0), the
shifted to either higher or lower elution volumes with respect toterm{exp(-V/zgg)/es } in Eq.(12)tends to a Dirac delta and,
sEr(V). In any caseg(V) is normalized; i.efooO g(V)dv =1.  asexpectedg(V) becomes a zero-mean Gaussian:

For uniform (or elution volume invariant) BB functions, E@)

reduces to the following simpler expression: g(V) =

ex

1 V2
exp|— 13
2o P [ 20%5 ] (13)

oo f— — f—
sor(V) = /0 g(V = V)spr(V) dV = g(V) x spr(V) ®) 22 pr chromatogram for a Poisson NCLD

where the symbol *' stands for the standard “convolution prod-  According to the theoretical work of Flory (see for example
uct”. Based on Egg6) and (8) the normalized chromatograms, Ref.[37]), the polymer obtained through an ideal living anionic
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polymerization should exhibit a (discrete) Poisson NCLD given 1 =150
by S R AN e

expa)ai-1 i) \ M, = 15830§//mol
np(i) = G- (14.a) 0021

: WCLD:
wherex is the unique parameter of the distribution. From Egs. 001 w(?)
(4.a) (4.b)and(14.a)the corresponding discrete WCLD results:
wp(i) = - —li_ 1ex?.(_)\i))‘: ! (14.b) (a)ouo 130 150 170 19
1 — :
It is verified that the mean ofp(i) andwp(i) areA +1 and ? S5r(P) | 45
A +2, respectively. 2(V-48)
Consider a hypothetical polystyrene sample logM(V) | .

(Mp=104.15g/mol), with a Poisson NCLD of =150. 11
The NCLD and the WCLD calculated from Eq¢l4.a)
and (14.b) are shown inFig. 1a). The average molar %:(V) 33
masses  are: M, = Moy ;in(i) = 15727 (gmol), and
M, = Moy ;iw(i) = 15830 (gmol); and the polydisper- 0 ‘ . ‘ 3
sity index is:M,,/ M, = 1.0066. The BB function was selected ®) 47 48 9 30 ¥ [mL]
as an EMG withogg =0.20 mL andrgg =0.25mL [Eq.(12)]. 2 1w —>
An arbitrary BB function (atV = 48 mL) is shown irFig. 1b). r=-12466
For the molar mass calibration, the following parameters were 11 W)
adopted:a=13.0076 andb=0.179941 mt?! [Eq. (5)]. The
normalized chromatogram3gg(V) and5pr(V), were simu- 0

lated according to Eq¢5), (9.a), (9.b), (12), (14.a) and (14.b)

and are represented ftig. 1b). All numerical simulations were 1

implemented on the basis of a lindaaxis, evenly-spaced with <« hViig)
volume increment& V=0.005 mL. 2 - PR -
The first derivative ofpr(V), h(V), exhibits a maximum at © View Vi V[mL]

V=Viow, and a minimum aV = Vhign, as indicated irFig. 1c),

and the elution volume$Viow, Vhign} describe also the loca- _ " i 10- e

tion of the two points of inflection of (V) Following the and (b) an undisturbé ; (V) through the linear molar mass calibration IdgV)
p DR ) g as well as a broadened chromatographic sigpa{V) (with ogg =0.2mL and

prqcedure Suggested by one of the aUtf{a_Q38’39] these_ s =0.25mL) (an arbitrary BB function witly = 48mL is also shown). The
points of inflection can also be used to define the peak widthtirst derivativei(V) of the broadened chromatographic signal is shown in (c)

The ordinate values of the first derivatiyé(Viow), h(Vhigh)}, toge‘ther with the_ c_oordin_ates of the p(_)int; of inflecti®fv, Vhign) and their
accordingly, correspond to the slope at the points of inflectioff?@imum and minimum in the first derivative.

and contain valuable information concerning the parameters of ] ) _

the BB function, whereas the ratio= h(Viow)/h(Vhigh) gives parameter. In ordert(_) derive athepretlcal expression fdine
some information about the asymmetry or skewnesggfV). chromatogram.s obtained fro.m Poisson NCLDs were replaced
For instance, it is easily verified that —1 for a symmetri- DY corresponding EMG functions of mean voluweand stan-

cal chromatogram (e.g. a Gaussian chromatogram); while for §ard deviatiorrp (seeAppendix A). It was numerically proven

skewed chromatogram with tailing towards higher elution vol-that5pr(V) can be adequately fitted with an EMG function for
umesr< —1. A >100 [cf.Fig. 6]. Then, the following correlation was derived

(seeAppendix B):

Fig. 1. Atheoretical Poisson NCLD with= 150 was converted to: (a) a WCLD

W(View) . (1/v/21\/ 0B + 08) exp(—(Viow — Vi + 188)/2(08 + 0B)) — S0R(Viow)
r = = —
h(Vhign) (1/+/27\/ oBg + 0B) exp(—(Vhigh — Ve + 188)°/2(03g + 03)) — 5pr(Vhigh)

In Fig. 2 the ratiosr =h(Viow)/h(Vhign) obtained from the
simulated chromatograms (continuous traces) are compared

(15)

3. Correlations for the estimation of o and tpp with their estimation from Eq(15) (indicated by symbols), for
three selected Poisson NCLR £50, 100, 200), and for sev-
3.1. Case 1: Poisson NCLD eral values obgg andzgg, in the ranges: 0.X ogg <0.5 and

0 < tgg <0.3. For the two selected limiting values g, the
According to Eq(8), boths§(V) andg(V) contribute to the  dashed curves connect thealues calculated from the simulated
asymmetry ofspr(V), and therefore, to the magnitude of the chromatograms. For low, 5§z(V) cannot be adequately fitted



106 J.R. Vega, 1. Schnéll-Bitai / J. Chromatogr. A 1095 (2005) 102—112

whereA[spr(V)] = Vhigh — Viow is @ measure of the experimental
peak width defined via the location of the points of inflection;
andA[sgg(V)] is the theoretical peak width in absence of BB.
Whenever multimodale distributions composed of either truly or
almost baseline separated Poisson peaks are used this approach
can be chosen.

The second correlation is based on the variancepatV),
Var[spr(V)], which can be determined with accuracy only for
truly baseline separated peaks (because of the necessary choice
of integration limits):

Var[spr(V)] = Var[sSg(V)] + oag + 735 (17)

in which Var[sgr(V)] is the variance of the unbroadened
chromatogram. Both additional correlations of E{&5) and
(17), require some knowledge abasfjz(V) to evaluate either
A[spr(V)] or Var[spr(V)]. It was already showf38—40] that

the unbroadened peak width corresponding to a Poisson NCLD
can be approximated by:

A+ VA
A=k

where) can be calculated from the PDI of the sample, on the
basis of the following relationship:

1
PDlpoisson= 1+ X (19)

Alspr(V)] = %Iog

(18)

Strictly speakinga should be replaced by+ 1 in Eqs.(18)

160 " " 0 and (19) However, for typical values of > 100, the experimen-
© Opp? +7gg? (mL?) _tal accuracy is not high enough to detect the_ resulting deviations
in A[sgr(V)] or PDlpgisson(smaller than 1% in most cases).
Fig. 2. The ratio-= /(Viow)/(Vhign) as a function of the BB varianeg + 73 On the other hand, Vai§(V)] can be estimated in a first

for three Poisson NCLD. The full line connects the results obtained from th : : :
simulations, the points were calculated with r.h.s. of#§)and the correspond- e?sp)parﬁ)élra%t}mn through the Knox equatif29] [cf. Egs.(2), (3),

ing op values (as given in thAppendix A). The upper dashed curve connects
the results forgg =0.0 mL, whereasgg = 0.3 mL for the lower dashed curve.

Different ogg values are represented by the following symbo®) 0.1, (x) VarfsS o (V)] =
0.2, (a) 0.3, (*) 0.4, @) 0.5. Lsor(V)] =

1/x + (11/4)/A% + (137/12)/23
b2In?(10)

(20)

with an EMG, and therefore, discrepancies @re observed at By inserting Eq(18)into Eq.(16), and Eq(20)into Eq.(17),

low values ofogg andrgg (seeFig. 2a). Fortgg ~ 0, g(V) is  the following correlations are obtained:

a Gaussian function [Eq13)], and the asymmetry dipr(V)

(r<-1) is exclusively determined by the asymmetry of the 1 A+ A
h— v

? +4dofg + 2135 (2l.a)

NCLD. The symmetry of a Poisson NCLD increases with Alsor(V)] = b2
and therefore, foi >200 andrgg =0, spr(V) is almost sym-
metric yieldingr~ —1. It can be seen for =200 (ig. 2c) how
r is slightly lower than—1 for small values obgg and con-  Var[spr(V)]
verges very fast towards1 for higheropgg values. In contrast, 2 3
forlow A values (e.gh = 50),5pr(V) is skewed even forgg = 0, = 12+ (11/4)/)} + (137/12)/2
andr<-—1 (seeFig. 2a). On the other hand,becomes almost b?In“(10)
independent of. at high values ofgg andzgg.

To estimate botlrgg andzgg from Eq.(15), it is necessary For two Poisson NCLDX(=50 andx =200), Figs. 3 and %
to develop at least a second independent correlation of these oW the correlations of Eq1.a)and(21.f). Both A[spr(V)]
variables. By analysing the DR chromatograms (simulated fond Varkpr(V)] were directly calculated from the simulated
several values of, ogg, andrgg), two independent correlations DR chromatograms, and their values are represented by con-

were found. The first correlation is as follows: tinuous traces; while the r.h.s. terms of E(&l.a)and (21.f)
) . 5 ) ) are represented by dots. The r.h.s of E&{..a)acceptably esti-
(Alsor(V)D® = (Alspr(V)D)” + 4ogp + 2738 (16)  matesA[spr(V)]; except for high values ofgg/ogs, where

+ odg + 185 (21.b)



J.R. Vega, I. Schnéll-Bitai / J. Chromatogr. A 1095 (2005) 102-112 107

A [spr(M)]

1.2 9

3.2. Case 2: log-normal WCLD

When a log-normal WCLD is combined with a linear molar
mass calibration [cf. Eq(5)], the resulting corrected chro-
matogram follows a Gaussian function described through:

08 w n 1 (V = Vo)
5pr(V) = N exp <_20(23> (22)

0.6

(a) 0

1.1
A [spr(M]
0.9

0.7 3

0.5

03

(b)

Fig. 3. The peak width of two Poisson distributions defined via the points of
inflection [Eq.(16)] as a function ofrgg for severabgg values (as indicated):
full curve connects the results from the simulations, points were calculated with

Eq.(21.a)

where {Vg, og} represent the mean volume and the standard
deviation of the Gaussian, respectively. In the case of a Gaus-
sian BB,spr(V) becomes a Gaussian function too (because the
convolution of two Gaussian yields a new Gaussian of mean vol-
umeVg, and variance given by + o3g. In such case, it can be
easily shown that thevalue ofspr(V) is always—1, as the slope

at the points of inflection depends on the standard deviation and
differs only in the algebraic sign. Whenever asymmetric broad-
ening is involved [Eq(12)] the ratio will become smaller than
—1. A similar procedure to that dippendix Bwas developed

in this case, and the following correlation was obtained:

_ h(Viow) _ e+ Alspr(V)] _ eA[sor(V)]
" h(Vhign) e — Alsor(V)] ( 2(08 + U§5)> @9

with & = 2(Vg — 88 — Viow) — Alspr(V)]. Egs.(16) and (17)
remain valid but the corresponding equations for the difference
[sBr (V)] and the correct variance must be used instead:

. . . A
the highly skewed BB functions strongly distort the shape

of the unbroadened chromatogram. The r.h.s. term of EgA[spr(V)] = 206 (24.9)
(21.b) accurately estimates Vagr(V)] for Poisson NCLD of c 2

A>100. Fora <100, Varpr(V)] is overestimated because the Varlspr(V)] = 0§ (24.b)
Knox correlation overrates the variance of the unbroadenefading to

chromatogram.

Var[ spr(V)]

04

0.1

(a) 0 01 02 03

Var[ spr(V)]

0.3 1

0.2

0.1

M

=03

0

053 = 0.1

(b

Fig. 4. The variance of two Poisson distributions as a functiaggffor several
opg values (as indicated): full curve connects the results from the simulations,

points were calculated

0 0.1 0.2 03

7gs (ML)

with E¢R1.b)

2
T
Alspr(V)] = 2/ 08 + 08g + % (21.c)

Var[spr(V)] = 6& + 035 + T8g (21.d)

Whenever the BB process is purely symmetric thgg=0
and Eq(23)yields again=—1 asVg — Viow = 3 Alspr(V)]-

4. Strategies to estimate the BB parameters

The decision which combination of equations should be used
to determine the BB parameters depends on the available infor-
mation about the analyzed polymer. Several case scenarios can
be thought of and are enumerated and critically reviewed. A gen-
eral criterion is whether the peaks are truly baseline separated
or only approximately baseline separated. In the first case, vari-
ances can be determined via the standard procedure of summing
the weighted signal heights:

1
> i—15or(V))

. ~ 2j=1Visor(V)) ’ '
X; <Vz S or(V) ) sor(Vi)

Var[spr(V)] =

(25)
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In the latter case, the error in the variance will increase withmore than 50%). Therefore, it is recommended to determine
decreasing resolution (i.e. strong overlapping of peaks), due tb from the location of the peak maximum unless the polydis-
the distribution cut off by the deliberate choice of summationPersity is given with an extremely high accuracy. In principle,
limits. For slightly overlapping peaks the recommendation isMALDI measurements can also be used to deterrhinad the

therefore to use the peak width defined via the points of inflectiofpolydispersity.
rather than the variance of the distribution. Once a given value of has been determined, three differ-

ent combinations of the derived correlations may be selected to
estimateogg andrgg: (i) Egs. (15) and (21.g)(ii) Egs. (15)
and (21.b)and (iii) Egs.(21.a) and (21.b)in cases (i) and (ii),
R : . . : Egs.(A.4) and (A.5.amust also be used to estimate the param-
F k f P NCLD fi = . .
rom a kinetic point of view, a Poisson NCLD is expected Oreters{Vp, op} required by Eq(15). In any case, the sign ofs

anionic polymerizations with peak chain lengths ranging from ’ T -
200[41] to approximately 10,000. The advantage of such a OIiS[nust be deduced from the peak shape itself, but it will be positive
; xceptfor aratheruncommon case of strongly negative skewness

tribution is that the location of the peak maximum is the essentia‘?f the BB function (i h h i K
parameter. Without additional information it is necessary to giveO € unction (I.e. whenever such negative skewness more

an estimate of the maximum error that is introduced whenever than compensate the positive skewnessigf(V)). Except for

is determined from the experimentally measured chromatogranzg'ghtly negativergg’s, ther value W.'” indicate the sign ofg:

It can be shown (by a procedure similar to the one described ifP" values smaller (greater) tharll is zgg >0 (rgg <0). When

[38]) that the location of the peak maximum of the correspond—a muItlquaI chromatogram is ava_llab_le (V\_/here the peaks are

ing WCLD can be approximately described by not baseline separgted_), the combination (i) should be ch_osen.
Due to the overestimation df, both Vp andop are underesti-

ima{WCLD) = A + 1.5 (26.a) Mated as can be derived from the simulation results summarized

in Fig. 6a); however, the resulting error propagation through Eq.

4.1. Poisson NCLD

a — log[Mo(imax + 1)]

Vinax(GoR) = ’ (26.b) (15)is relatively small.
4.2. Log-normal WCLD
o «._ a—log[Mo(r + 25 §
Vo = 101 Z( ) (26.0

Whenever polymer distributions are discussed in polymer
i.e. Vmax(3pR) is shifted to a somewhat lower elution volume with textbookg42] the log-normal distribution function is included,
respect to the volume at which a hypothetical uniform samplalthough in most cases information about the type of polymer-
of chain length. would elute. From Eq(26.a)it is obvious that ization (or polymerization conditions) which should yield such a
the agreement betweénax andA becomes better for higher  distribution is missing. In some cases the log-normal distribution
values. For a NCLD with. =150 the location of the peak maxi- is used for an approximate description of, e.g. the distribution of
mum in the unbroadened chromatogrégp(V) should be atan  crosslinked photopolymefd3]. If polydispersities are smaller
equivalent chain lengthv(+ 2.5) of 152.5 which corresponds to than 1.2 MALDI could give information about the number and
48.942 mL [cfFig. 1]. Unfortunately, in practice E¢§26.c)only ~ mass average degree of polymerizafibA3], and consequently
can be used by evaluating the maximum of the “experimentalthe polydispersities, which can be used to calculate the contribu-
chromatogram, which is further shifted to a lower elution volumetion o,?,Dl [according to Eqs(2) and (3), as a way of estimating
due to the influence of the asymmetric broadening. In the casthe peak width and/or the variance of the unbroadened chro-
of Fig. 1, the maximum is detected at 48.885mL which cor-matogram [as given by Eq&4.a) and (24.1)
responds to an equivalent chain length of approximately 156. Comparison of the unbroadened and “experimental” chro-
This introduces an error in the estimatedof +2.3% when matogram again shows that the location of the peak maximum
Egs. (26.a)—(26.c)are used. Also, the “true” peak width cal- Vg is shifted to lower values. The extent of the peak shift reduces
culated according to E18) is slightly lower by about 1.4%, with largecgg and smalkgg. The simulations also showed that
and the variance is also underestimated by 1.0% whe@B). Eq. (16) remains valid, whereas the correctness of @q) is
is used. Based on several simulations, it was verified thak: (a) usually agreed upon. Eq®4.a) and (24.bjogether with Egs.
is overestimated, except for extremely low valuesgy; (b) the  (16) and (17tan be used wheneveg is known with sufficient
estimation errorincreases wittior A < 1000, while itisapproxi- accuracy.
mately constant fox > 1000; and (c) for a giveh, the estimation In Fig. 5, the excellent agreement betweenithalues deter-
error increases withgg (at a fixedogg), and withtgg/ogg (ata  mined from the simulated distributions (full curves) and those
fixed rgg). For typical values ofgg andzgg, estimation errors  calculated with Eq(23) (dots) can be seen. The broader the
lower than 7% are to be expected. For instance, with the BBriginal distribution the less pronounced is the influence of the
parameters ofig. 1, the error would be lower than 4% for any BB parameters om. A high accuracy of the input valudgs
Poisson NCLD. andog is essential for reasonable results. In principle, again
The calculation ofa with Eq. (19) from a given poly- three different combinations of correlations can be chosen to
dispersity (as given, e.g. by the supplier of polymer stanestimatergg andrgg: (i) Egs.(23) and (21.¢)(ii) Egs.(23) and
dards) is susceptible to the introduction of a considerabl€21.d} and (iii) Egs.(21.c) and (21.d)For the first two cases
error (in some cases leading to an underestimation bfy  tgg can be calculated from the rearranged E2%.c) and (21.d)
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values at the maximum and minimum in the first derivative)
gives immediate information about the existence of asymmetry
in the peak shape. The experimental ratio is equaltoonly
for symmetric peaks; it will be smaller thanl as soon as any
kind of asymmetry occurs fargg >0 (a case already observed
by Busnel et al[29]). From a mathematical point of view ratios
— greater than-1 are to be expected fogg <0, although no such
Vo=44.5 mL case was observed experimentally to the best of our knowledge
0c =0.278 mL till now. Whenever either the true (or correct) distribution or
' the function describing the BB process or both deviate from a
simple Gauss distribution the experimentally measured peaks
will be skewed and the value will deviate from-1.

Another test to find out whether symmetric or asymmet-
ric broadening takes place can be done with the aid of Eqgs.
(21.a)—(21.fyhowever, the knowledge of some information con-
* cerning the true distribution (Poisson or log-normal) is necessary

~ in this case. In all, the simple structure of the developed equa-
Vo=44.5 mL tions are favourable for a transparent determination of the BB
L ' e 0‘55'6 mL parameters.
0 01 02 03 Finally, the applicability of the presented equations is not
(b) Opsl + Tap? (mL?) restricted to the direct determination of BB parameters but can

also be used either as an independent consistency check of BB
parameters derived, e.g. by inversion procedures or as a good
Jestimate to start the inversion procedures with.

Flg 5. The ratior = 1(Viow)/h(Vhigh) as a function of the total vananu::%B

rBBfor two log-normal WCLD of different variances. The full line connects the

results obtained from the simulations, the points were calculated with r.h.s.

Eq.(23). The dashed curve connects the resultsfgr= 0.3 mL.
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to solve Eq(23)in order to obtairvé + aéB and consequently

osg. For the last case (iii), Eqé21.c) and (21.dyield: Appendix A. Adjustment of the DR chromatogram of a

1 Poisson NCLD with an EMG
ogg = \/2 Alspr(V)]? — Var[spr(V)] — 03 (21.e)
This appendix aims at fitting the normalized corrected DR
- 1 chromatogran&g,(V), corresponding to a homopolymer with a
BB = \/ZVar[sDR(V)] - EA[SDR(V)]Z (@10 poisson NCLD g?paramet&r{Eq (14.a) and (14.5) by means
of an EMGfuncuonsDR(V) of parameter$ Vp, op, Tp}. For a
5. Conclusions linear molar mass calibratidifz(V) can be simulated through

Egs.(5), (9.a) and (14.hwhile §CDR(V) is simulated from:
A method capable to determine BB parametersincluding both

cases of (symmetric) Gaussian and (asymmetric) EMG funcsc 1 (V- Vp)2 1%

tions was developed based on simulated distribution curves. tor(V) = V2moptp exp 202 *exp <_rp)

is important to be able to discern the actual BB function as the (A.1)

peak shape is a fundamental paramptdt which is influenced

by the experimental parameters and gives access to an improved

understanding of the separation mechanism. Assume a discrete elution volume axis evenly-spaced (with
The advantage of the presented methods is that no numencélV) in the range Y1 — V2], such as the ordinates &g (V) and

inversion procedure is necessary. The general procedure requniese(V) outside 1 — V2] can be neglected. A discrete version

the numerical differentiation of the experimental signal togethepf V is represented by the vect8r=[Vy, Vi1+ AV, V1 +2AV,

with the determination of the maximum location, the variance, - ., V2]'. (Superscript ‘T’ stands for the transpose vector.) At

and/or the points of inflection. The newly defined ratio of theeach component of, the (column) vectord,, andspy contain

slopes at the points of inflection (which are simply the ordinatethe ordinates &g z(V) andsDR(V), respectively. The following
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extended error vectoe, was defined: A <50, 5pr(V) cannot acceptably be adjusted by an EMG
e s¢ function.
SDR — SDRA For a broad range of the BB parameters, numerical simu-
e= AVVT(§f)R — §]c)R) (A.2) Iat!on_s of the DR chromatograms showed tlvatpractically
VarfsSs(V)] — Var[ECD V)] coincides with the peak volume of the measured chromatogram,

Vpeaspr)- Thus,Vp can be estimated as:
The first component of EqA.2), Spr — §BR, isa(column) _

vector that represents the estimation errofgg(V) at each VP = Vpeak(sDR) (A.4)
discrete volume; while the second and third components are
scalar quantities that represent the estimation errors in the me
volume and in the variance 8§z(V), respectively. Then, the
values of{ Vp, op, Tp} can be obtained by solving the following
nonlinear least-square problem:

a For instance, fosgg =0.20 mL andrgg =0.25 mL,Fig. 6a)
S_PIOWSVpeak(SDR) (dashed line) practically over-imposed with
Vp.
Even for the common case of PS, the valuegpfand tp
depend on the molar mass calibration parameterand b)

. . T of the available SEC equipment; and therefore, the proposed
)= {VprELl?rp}(e ® (A-3) method should be implemented for each particular calibration,

accordingly. In order to avoid such implementation, the follow-
where/represents afigure of merit of the mean square estimatioihg approximate algebraic correlations for estimatingthand
error. In Eq.(A.3), the functionality of/ with A has explicitly  rp have been derived (for PS):
been included to remind that a different value/a§ obtained
for each Poisson NCLD of parameter \/ 5 5 5 =
For 50<A <400, and log¥(V)=a—bV (a=13.0076, 5p(h, b) = —(1.256/27) +(0.155/2) + 2.38 x 10

b=0.179941), the main simulation results are showRim 6. ’ b
The parameters of the adjusted EMGs ahdre indicated (A.5.9)
in Fig. 6a). SinceJ decreases monotonically with, better
adjustments ofg(V) by an EMG are obtained at high val-
ues of . Fig. 6o shows the agreement between the originalip(), b) =
(full curve) and the adjusted (dashed curve) chromatograms
for two selected distributions of =50 and A=150. For

—(27.70/A2) + (1.933/1) + 4.342 x 10°3
b

(A.5.b)

The correlations of EqqA.5.a) and (A.5.b)are shown in
Fig. 6a (dashed lines) again fér=0.179941 mL, and practi-
L 50 cally coincide with the values @fp andzp obtained through the
optimisation procedure. Only the slope of the calibration curve
anda influence the parametes$ andzp.

0.3 1

]712 = I/peak(sDR)

Appendix B. Derivation of ratio r [Eq. (15)]

Consider a homopolymer with a Poisson NCLD of parameter
X [Eq.(14.a], and its normalized correct chromatogragg (V)
adjusted by means of an EMG functi&ﬁR(V), of parameters
{Vp, op, tp} [cf. Appendix AEQ.(A.1)]. The uniform BB func-

21 - 2 tion, g(V), is represented by the zero-mean EMG of Ed).
<« Sr(V) = s5R(V) <
DR Then,spr(V) can be calculated from Eg.a), (9.b), (10) and
l (11) as follows:
L A =150 A=50 $or(V) = g(V) * 5pR(V)
exp=V/t
— |:N—TBBJBB(V) % w]

BB

exp=V/t
(b)048 49 50 51 52 53 * |:N‘7p,0'p(v) * p(r/P)] (B.1)

¥ [mL] P

Fig. 6. (a) The parametel®, op, p, andJ (representative for the mean square Bearing in mind that: (i) for two signals; and y;,y1*

estimation error) as a function af (b) Full curves: the Poisson WCLDs con- Koy - : : ;
o . = ; and (ii) the convolution of two Gaussian is a
verted to the chromatographic signals, dashed curves: EMG function calculateyoz Y2 1 (i

with the corresponding parameter trige, op, p. new Gaus&anN;lm(V) * N‘72,02(V) = N‘71_H72, /Uf_,_gg(v)’
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then:

5pr(V)
exp(-V/teB) . exp(V/tp)
8B P

= N_1gg,088 (V) * Nij, 5p(V) %

- NVP—TBB. A/ GéB+US(V)
expV,
p( /TP)Jr
™

exp(V/tss)
BB

P
P — BB

BB
BB — TP

*

(B.2)

In practicetp # g, and therefore, Eq(B.2) can unam-

biguously be evaluated. Let us define the following auxiliary

parameters:
‘7 S Vp — TBB (B.3.a)
o= VUI%B + US (B.3.b)

_ h(View) (1/v/2m\ /o + 0B) exp(—(Viow — Vp + TBB)Z/Z(U%,B + 68)) — Sor(Viow)

111
d%pr(V)
dv2
1 Ny.o(V) —yee(V)  Nyo(V)—yp(V)
" p— BB 8B P
(B.7.b)

At the inflection points (IP), %pr(V)/dVZ = 0. Then,

88 [yp(ViP) — Ny o (Vie)] = telyee(Vip) — Ny ,(Vie)] (B.8)
From Egs(B.4), (B.7.a), (B.7.b) and (B.8}t is obtained:

vy = RO Nv,a(vlpip— ye(Vie)
V=Vip
_ Nvo(Vie) — yee(Vie) 69
BB .

The DR chromatogram has two IP placed at the elution vol-
umes:{Viow, Vhign}. From Egs.(B.3.a), (B.3.b), (B.7.a) and
(B.9), it results:

~ h(Vhigh) (1/@@) exp(—

By replacing Eq9B.3.a) and (B.3.binto Eq.(B.2), it results:

spr(V) = LyP(V) + TBiByBB(V) (B.4)
Tp — TBB BB — TP

where

2elV) = N (V) 2D (8.5.2)

yer(V) = Ny o (V) » ZPCV/T88) (B.5.b)

BB

Thus,spr(V) is the weighted sum of two EMGsH(V) and
yee(V)], which only differ in the exponential decay term.

Any arbitrary EMG functionyo(V), of parameterg Vo, oo,
70} verifies the following ordinary differential equation:

dwo(V) 1
Y + Toyo(V)
1 V=70 NipooV)
= —eX — = > B.6
v 20010 P ( 205 70 (B.6)

Then, from Eqs(B.4)—(B.6) the first and second derivatives
of spr(V) are:

dspr(V) _ yee(V)—ye(V) 1
dav. P — BB T

= L [3e(V) — SoR(V)]
BB

[ysa(V) — SpR(V)]

(B.7.a)

~ (B.10)
(Vhigh — VP + 88)°/ 2(03g + 08)) — 5or(Vhigh)
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